Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

نویسندگان

  • Anna Pasternak
  • Frank J. Hernandez
  • Lars M. Rasmussen
  • Birte Vester
  • Jesper Wengel
چکیده

A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15-0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by T(m) versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative

Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investi...

متن کامل

Improvement of Aptamer Affinity by Dimerization

To increase the affinities of aptamers for their targets, we designed an aptamerdimer for thrombin and VEGF. This design is based on the avidity of the antibody, whichenables the aptamer to connect easily since it is a single-strand nucleic acid. In this study,we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer.Each aptamer recognizes a different part of the th...

متن کامل

Development of an Efficient G‐Quadruplex‐Stabilised Thrombin‐Binding Aptamer Containing a Three‐Carbon Spacer Molecule

The thrombin-binding aptamer (TBA), which shows anticoagulant properties, is one of the most studied G-quadruplex-forming aptamers. In this study, we investigated the impact of different chemical modifications such as a three-carbon spacer (spacer-C3 ), unlocked nucleic acid (UNA) and 3'-amino-modified UNA (amino-UNA) on the structural dynamics and stability of TBA. All three modifications were...

متن کامل

A Universal Base in a Specific Role: Tuning up a Thrombin Aptamer with 5-Nitroindole

A thrombin binding aptamer (TBA) is a synthetic 15-nt DNA oligomer that binds human alpha thrombin with high specificity and reversibly suspends the coagulation cascade and platelet formation. It has been established that TBA folds intramolecularly into a G-quadruplex (GQ) structure in solution, forming two G tetrads and three loops1. Two TT loops play a critical role in recognizing the target ...

متن کامل

Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay

Development of potent new anti-Shigella agents for rapid and specific detection and treatment is of great importance. Aptamers, nucleic acid oligomers capable of specific binding to a wide range of non-nucleic acid targets, may be of value for this purpose. In the present study, we used a Systematic Evolution of Ligands by Exponential enrichment (SELEX) process to select DNA aptamers that b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011